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Real-time Logics:/ 
Complexity and Expressiveness1'2 

Rajeev Alur Thomas A. Henzinger 

Department of Computer Science 
Stanford University 

March 15, 1990 

Abstract. The theory of the natural numbers with linear order 
and monadic predicates underlies propositional linear temporal logic. 
To study temporal logics for real-time systems, we combine this 
classical theory of infinite state sequences with a theory of time, 
via a monotonic function that maps every state to its time. The 
resulting theory of timed state sequences is shown to be decidable, 
albeit nonelementary, and its expressive power is characterized by 
w-regular sets. Several more expressive variants are proved to be 
highly undecidable. 

This framework allows us to classify a wide variety of real-time 
logics according to their complexity and expressiveness. In fact, it 
follows that most formalisms proposed in the literature cannot be 
decided. We are, however, able to identify two elementary real-time 
temporal logics as expressively complete fragments of the theory of 
timed state sequences, and give tableau-based decision procedures. 
Consequently, these two formalisms are well-suited for the specifica- 
tion and verification of real-time systems. 

1    Introduction 
Linear propositional temporal logic (PTL) has been demonstrated to be a work- 
ing tool for the specification and verification of reactive systems ([Pn77], [OL82], 
[LP84], [MP89]). Its practical appeal stems from the strong theoretical connec- 
tions that PTL, which is interpreted over infinite sequences of states, enjoys with 
the underlying classical first-order theory of the natural numbers with linear 
order and monadic predicates:   PTL captures an elementary, yet expressively 

lThi« research was supported in part by an IBM graduate fellowship to the second author, 
by the National Science Foundation under grant CCR-8812595, by the Defense Advanced 
Research Projects Agency under contract N00039-84-C-0211, and by the United States Air 
Force Office of Scientific Research under contracts 88-0281 and 90-0057. 

2 An abbreviated version of this paper appears in the proceedings of the 5th Annual IEEE 
Symposium on Logic tn Computer Science (1990). 
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complete, fragment of this nonelementary theory ([SC85], [GPSS80], [St74]); 
that is, any property of state sequences expressible in the monadic first-order 
theory of (N, <) can also be specified in PTL, which has a much simpler decision 
problem. 

PTL admits, however, only the specification of qualitative time requirements, 
such as an event occurring "eventually." To enable quantitative reasoning about 
the timing delays in real-time applications, real-time logics include explicit time 
references and are interpreted over timed state sequences, which associate a 
time with every state ([JM86], [Os87], [Ha88], [AH89], [Ko89], [HLP90]). Even 
though the suitability as specification language has often been demonstrated, 
most of these previous attempts remain ad hoc, with little regard to complexity 
and expressiveness questions. 

The prime objective of this paper is to develop a unifying framework for 
the study of real-time logics. In analogy to the untimed case, we identify the 
underlying classical theory of timed state sequences, show it to be nonelemen- 
tarily decidable, and use its complexity and expressiveness as point of reference. 
We are able to define two orthogonal extensions of PTL that inherit its appeal: 
they capture elementary, yet expressively complete, fragments of the theory of 
timed state sequences, and thus are excellent candidates for practical real-time 
specification languages. 

Outline 

In Section 2, we define the theory of timed state sequences by combining a 
theory of state sequences with a theory of time, via a unary monotonic function 
that maps every state to its time. As for PTL, the monadic first-order theory 
of (N, <) serves as the theory of states. To model time, we choose the theory 
of (N> <> =)• We show that the resulting combined theory is still decidable, and 
characterize its expressiveness by o»-regular sets. 

We claim that this theory of timed state sequences is indeed the theory for 
reasoning about finite-state real-time systems. All conceivable extensions and 
variations, like additional primitives over time (such as addition), or a dense 
time domain, result in highly undecidable (Hj-hard) theories. It follows from 
our results that none of the real-time logics proposed by [JM86], [Os87], [Ha88], 
and [Ko89] can be decided, which vividly demonstrates that it has not been 
understood, so far, how expressive a theory of time may be added, without 
sacrificing decidability, to reasoning about state sequences. 

In [AH89], we proposed timed PTL (TPTL) as a natural specification lan- 
guage, and developed a tableau-based decision procedure. It turns out that 
TPTL captures precisely the fragment of the theory of timed state sequences 
obtained by combining PTL (the temporal fragment of the states component) 
with the quantifier-free fragment of the time component. We argued, in [AH89], 
that it is this restriction of disallowing quantification over time, what yields read- 
able specifications as well as finite-state-based verification methods. In Section 



3 we show it to be both harmless, by proving the expressive completeness of 
TPTL with respect to the underlying classical theory, and essential, by prov- 
ing the nonelementary nature of TPTL extended by quantification over time 
variables. 

There are, in fact, second-order versions of all our theorems: the second- 
order theory of timed state sequences is still decidable, and just as PTL is 
generalizable to ETL ([Wo83]), TPTL can be extended to be as expressive as 
this second-order theory, at no cost in complexity. 

Surprisingly, the addition of past operators renders TPTL nonelementary. 
This induces us to introduce, in Section 4, another expressively complete frag- 
ment of the theory of timed state sequences, MTL, which includes past oper- 
ators, but restricts the states that may be related by timing constraints. We 
present a tableau-based decision procedure for MTL, thus demonstrating its 
applicability for the verification of real-time systems. 

Both TPTL and MTL are", while being elementary, still quite expensive; the 
respective decision procedures work in doubly exponential time. In Section 5 we 
show that this cost is, however, intrinsic to real-time reasoning: any reasonably 
succinct and reasonably expressive extension of PTL is necessarily EXPSPACE- 
hard. Even the special case of identifying next-time with next-state, which 
restricts us to reasoning about synchronous systems, is not cheaper. 

2    The Theory of Timed State Sequences 

Real-time logics are interpreted over timed state sequences. Given a finite set 
of propositions P and a time domain TIME, a timed state sequence p = (a, r) 
is a pair consisting of an infinite sequence a of states o-{ C P, i > 0, and a 
map T:N-* TIME that associates a time with every state. We introduce the 
classical theory of timed state sequences, show its decidability, and characterize 
its expressiveness by w-regular sets. 

2.1    The classical theory of state sequences 

First, we recapitulate briefly why the theory of the natural numbers with lin- 
ear order and monadic predicates underlies linear-time propositional temporal 
logics, which are interpreted over infinite sequences of states. 

Let C2 be the second-order language with unary predicate symbols and the 
binary predicate symbol <, and let £ be its first-order fragment. We interpret 
C? over the natural numbers, with < being interpreted as the usual linear order. 
Throughout we consider only formulas that contain no free individual variables. 
Thus, given a formula <j> of £2 with the free predicate symbols Pi,...pn, an 
interpretation / for <fi specifies the sets p^.-.p^ C N. Such an interpretation 
can be viewed as an infinite sequence a of states Oi C {pi,...p„},i > 0 (let 



Pk € n iff i € p[).  By .M(<6) we denote the set of state sequences that satisfy 

Observe that £2 is essentially the language underlying the theory SIS, the 
second-order theory of the natural numbers with successor and monadic pred- 
icates. This is because, in SIS, the order predicate < can be defined from the 
successor function using second-order quantification (and vice versa). It was 
first shown by Büchi that the theory SIS is decidable ([BÜ62]). 

Formulas of the proposition^ linear temporal logic PTL can be faithfully 
translated into £, by replacing propositions with monadic predicates. For exam- 
ple, the typical response property that "Every estate is followed by a «-state » 
is expressed in PTL as ' 

It can be written in £ as 

Vz.(p(i) _ 3j>i.q(j)), ^R) 

without changing the set of models. 

Although PTL corresponds to a proper subset of £, it has the full expres- 
sive power of £ ([Ka68], [GPSS80]); that is, for every £-formula there is a 
FTL-formula specifying the same property of state sequences. Furthermore the 
validity problem for £ is nonelementary ([St74]), whereas PTL is only PSPACE- 
complete ([SC85]), and has a singly exponential decision procedure ([BMP81]) 

To attain the greater expressive power of £2, PTL may be strengthened 
by adding operators that correspond to right-linear grammars ([Wo83]) The 
resulting logic, extended temporal logic (ETL), has the expressive power of £2, 
and like PTL, still a singly exponential decision procedure. 

f rM
Ti£ eS£!ST" °f £2 CaD *° be charact«i*ed by u,-regular expressions 

([Mc66], [Th81]): for any formula tf of £2, the set M(<j>) can be defined by an 
u>-regular expression over the alphabet *>({ftf.. .Pn}). For example, MUR) is 
described by the expression 

[{?.?}+{?} + {} + ({?}; true'; ({p,q} + {q}))]u. 

The restricted expressive power of £ corresponds to the star-free fragment of 
w-regular expressions (in which the Kleene star may be applied only to the 
expression true). 

2.2    Adding time to state sequences 

To obtain a theory of tuned state sequences, we need to identify a suitable 
time domain TIME, with appropriate primitives, and couple the theory of state 
sequences with this theory of time through a unary ("time") function / which 
associates a time with every state. We choose, as the theory of time, the theory 
of the natural numbers (i.e.,  TIME =  N) with linear-order and congruence 



primitives. Since the time cannot decrease from one state to the next, we 
require that / be monotonic. We will have an opportunity to justify these 
decisions later. 

Let Cj be a second-order language with two sorts, namely a state sort and 
a time sort. The vocabulary of Cj. consists of unary predicate symbols and 
the binary predicate symbol < over the state sort, the unary function symbol 
/ from the state sort into the time sort, and the binary predicate symbols <, 
=2, =3,... over the time sort. By C? we denote the first-order fragment of C\.. 

We restrict our attention to structures that choose the set of natural num- 
bers l\l as domain for both sorts, and interpret the primitives in the intended 
way. Thus, given a formula 4> of £y with the free predicate symbols px,... pn, an 
interpretation I for <f> specifies the sets p{,.. .p£ C N and a monotonic function 
/ : N —► TIME. The satisfaction relation is defined as usual. Every interpre- 
tation I for 4> can be viewed as a timed state sequence (IT, r) (choose a as in 
the untimed case, and let T = / ); by M.T{4>) 

W
« denote the set of timed state 

sequences that satisfy <j>. 
It follows that £y-formulas specify properties of timed state sequences. For 

example, the requirement of bounded response time that "Every p-state is fol- 
lowed by a g-state within time 1," can be written as a formula of £y: 

Vt. (p(i) - 3j > t. (q(j) A f(j) < f(i) + 1)) (<f>BR) 

(note that the successor functions, over either sort, are definable in Cj). 
An £j-formula 4> is satisfiable (valid) iff it is satisfied by some (every) timed 

state sequence. The (second-order) theory of timed state sequences is the set of 
all valid sentences of C\,. We prove it to be decidable. 

2.3    Decidability and expressibility 

First we show that, given an interpretation I for an £j.-formula 4>, the informa- 
tion in /   essential for determining the truth of <j> has finite-state character. 

Let us consider the sample formula 4>BR again. A timed state sequence for 
4>BR specifies, for every state, the truth values of the predicates p and q, and 
the value of the time function. Since / is interpreted as a monotonic function, 
it can be viewed as a state variable ft recording, in every state, the increase in 
time from the previous state. Although f6 ranges over the infinite domain N, 
observe that if the time increases by more than 1 from a state to its successor, 
then the actual value of the increase is of no relevance to the truth of <J>BR- 

Consequently, to determine the truth of 4>BR, the state variable fs can be 
modeled using a finite number of unary time-difference predicates. We employ 
the three new predicates Tdiff0, Tdiff lt and Tdiff2 in the following way. Tdiff0 

is true of a state iff the time increase from the previous state is 0, Tdiffl is true 
iff it is 1, and Tdiff2 is true iff it is greater than 1. Accordingly, we define 
the notion of an extended state sequence for <J>BR, as a state sequence over the 



propositions p, g,  Tdiff 0,   Tdiff\, and  Tdiff2 such that precisely one of the 
propositions Tdiff0, Tdiff u and Tdiff 2 is true in any state. 

Given an extended state sequence, we can recover a corresponding timed 
state sequence: the value of the time function in a Tdiff t-sUte is obtained by 
adding t to its value in the previous state (if Tdifft holds in the first state, let t 
be its time). This establishes a many-to-one correspondence between the timed 
and the extended state sequences for <J>BR\ it induces an equivalence relation 
on the set of all interpretations for <j>BR such that the truth of <pBR is invariant 
within any equivalence class. Every equivalence class is, furthermore, definable 
by a finite number of propositions. 

For formulas with congruence primitives, we need to introduce, apart from 
time-difference predicates, also unary time-congruence predicates, to keep track 
of the congruence class of the time value of every state. For example, consider 
the following formula ij>, which states that "pis true in every state with an even 
time value": 

Vi. (/(,•) =2 0 - p(i)). 

Given an interpretation I for V, the information in f1 can be captured by the 
two predicates Tcong0 and Tcong^. Tcong0 is true for states with even time, 
and Tcong1 is true for states with odd time. 

Now we formalize this idea. Let c{4>) be the least common multiple of the 
set {c | =c occurs in <t>}, and d{4>) the product of c((f>) and 4Q, where Q is 
the number of time quantifiers (i.e., quantifiers over variables of the time sort) 
occurring in <j>. 

Given a formula 4> of L\ with the free predicate symbols pi,.. .p„, an ex- 
tended state sequence J for <f> specifies the sets p{,...pJ

n C N, a partition of 
N into the sets Tdiff30,... Tdiff Jd(4>), and another partition of N into the sets 

Tcong0>... Tcongc^_v For any interpretation I for <f>, the extended state 
sequence J underlying I is defined as follows: 

• J agrees with J on px,.. .p„. 

• For i > 0 and 0 < * < d{4>), i € Tdiff{ iff /7(i) = f\i - 1) + f. 

• For i > 0, t € Tdiffiw iff /7(i) > /7(i - 1) + d{<j>). 

• For i > 0 and 0 < t < c{4>), i 6 TcongJ
t ifF f\i) =e{<t>) t. 

(Throughout we use the convention that, for any interpretation J, /;(-l) = 0.) 

Lemma  [Finite-state character of time].    Given a formula <p of L\ 
and two interpretations I and J for 4> with the same underlying extended state 
sequence, I £ MT(4>) iff J € MT{4>). ■ 

Proof:   Consider two interpretations J and J for the £^-formula <f> that 
have the same underlying extended state sequence; that is, I and J agree on 
the free predicate symbols of <j>, and for each i > 0, f'{i) and f}(i) belong to 



the same congruence class modulo c(<f>), and either /J(i) - f!(i - 1) is the same 
as fJ(i) - fJ(i - 1), or both are at least d(4>). 

We use induction on the structure of cp to prove our claim. To handle sub- 
formulas with free variables properly, we need to strengthen our assumptions 
about the equivalence of interpretations with respect to a formula. 

Let ip be a subformula of <j>, possibly with free variables. Let d(ip) be the 
product of c(<p) and 4^, where Q is the number of time variables bound in ip. 
For ease of presentation, we represent the function / by the countable set of 
variables {f{ \i > 0}: for any interpretation 7, let f[ = fT(i). By Tvar(ip) we 
denote the union of the set of free time variables of ip with {fi : i > 0}. We 
say that two interpretations 7' and J' for ip are equivalent with respect to ip iff 
they satisfy the following conditions: 

• For every predicate symbol g free in ip, q1' = qJ'. 

• For every state variable z free in ip, i1 = iJ ■ 

• For all 1,2/ G Tvar(ip), x1' < y1' iff x1' < y1'. 

• For every x, y € Tvar(ip), if 0 < x1' - y1' < d(ip), then 
i'       i'        i'       i'       i z    — y    = x1  —y, and vice versa. 

• For every x € Tvar(ip), x1 =c 

Clearly, the given two interpretations I and J are equivalent with respect to 
the given formula 4>. Thus, it suffices to show that, for any subformula tp of <f> 
and equivalent interpretations I' and J' for ip, I' \= i> implies J' (= %j). We do 
so by induction on the structure of <f>. 

The interpretations I' and J' agree on the assignment to predicate symbols 
and state variables of ip. They may assign different values to the elements in 
Tvar(ip), but they agree on their ordering and modulo-c(^) congruence classes. 
Clearly, if V> is an atomic formula, then I' ^ V> iff J' £= ij>. 

The case of boolean connectives is straightforward. 
Suppose that i> is of the form 3p. ip', for a predicate symbol p, and that 

V (= ip. Let I" be an extension of I' such that 7" \= ip'. From the inductive 
hypothesis, the extension of J' that assigns the set p7" to p is a model of rp'. 
Hence, J' \= ip. The case that ip is of the form Vp. ip' is similar. 

If the outermost operator of ip is a quantifier for a state variable, then we 
can proceed as in the previous case. 

Now consider the case that V is of the form 3x.y>', for a time variable 
i. Suppose that V \= ip. Let 7" be an extension of V such that 7" \= i/>'. 
First note that d(ip') = c(<p) ■ 4Q_1. We extend J' to an interpretation J" for 
ip' in the following way: if for some y £ Tvar(ip), |t/' - x1" \ < d(ip'), then 
choose xJ" to be y7' +'i7" - y1'. Otherwise, let yi,y2 € Tvar(ip) be such that 
y{' < x1" < y£. Note that y£ - y[' is at least d(rp), and hence, so is y£ - y('. 
We choose a;-7   between y{  and y/   at a distance at least d(ip') from either of 



them. Furthermore, since the difference between d(ij>) and 2d(ijj') is at least 
c(4>), we can require the modulo-c(^) congruence class of xJ" to be the same 
as that of x1 . Now /" and J" satisfy the requirements listed above. Using 
the inductive hypothesis, J" (= V', and hence, J' j= ip. The case of universal 
quantification is similar. ■ 

It follows that the extended state sequence underlying a given interpreta- 
tion for a ££-formula <j> has enough information for deciding the truth of <f>. 
Consequently, every formula 4> can be viewed as characterizing a set M'T(4>) of 
satisfying extended state sequences, instead of a set of satisfying timed state se- 
quences. Our next task is to show that this set is w-regular. This is achieved by 
constructing a formula in the language £2 that is satisfied by the same extended 
state sequences. 

For instance, the extended state sequences that satisfy <j>BR are the same as 
the models of the following formula: 

Vi. p(i) — 3j > z. 

/ / Vi. (i < i < j - Tdiff0{k)) V \ 

9Ü) A 

\ 

i< k < j A Tdiff^k) A 

v  ' v v*'**-( wtf0(*'J)"*; j)) 

\ 

Theorem [Regular nature of the time primitives]. Given a formula 4> 
of CT, there exists a formula ip of C2, with additional time-difference predicates 
Tdiff0, ■■■Tdiffd^ and time-congruence predicates Tcong0, ... Tconffc/^_1( 

such that M'T{(j>) = M(i/>). Furthermore, if <f> € CT then ijj € C. m 

Proof: Given an £|.-foimula if), we construct an equivalent (with respect to 
extended state sequences) £2-formula %/> in four steps. 

First, we eliminate all time quantifiers. Let I be an interpretation for <f>, and 
t = d(4>)+c(<f>). We can easily find an interpretation J with the same underlying 
extended state sequence, such that fJ(i) < fJ(i - 1) +1 for all i > 0. By the 
previous lemma, we know furthermore that J (= <j> iff I f= <f>. Based on this 
observation we perform the following transformation: a subformula 3y.i>(y), 
where y is a time variable, is replaced by the disjunction 

t t 

VlWO      V      3iy.      V*(/W+i), 
t=0 fc=0 

for a new state variable iy. Let <j>' be the formula obtained from (/> by applying 
the above transformation repeatedly until there are no time quantifiers left- 
clearly M}.(<£) = M'T (4?). 

The second step, resulting in <f>", models the primitive time arithmetic of 
comparisons and addition by constants by the time-difference predicates. For 
instance, consider the subformula f(i) + 1 < f(j), for state variables i and j. 
Intuitively, for f(i) to be less than f(j) in any interpretation, state i has to 



precede state j, and the time increase from the previous state has to be positive 
for some intermediate state. Hence, we replace the subformula by 

(t < j)  A 3k.{i<k<j A -.Tdijf „(*))■ 

Similarly, f(i) < f(j) and f(i) < f{j) + 1 can be replaced by 

V*.(j < k<i - Tdiff0(k)) (4>0) 

and 

4>o v 3Jfc. [j < k < i A Tdiff^k) A Vib' ^ Jb. {j < k' < i — Tdiff0{k'))}, 

respectively. The generalization to subformulas of the form f(i) + c < f(j) and 
f(i) < f(j) + c, for arbitrary c > 1, is straightforward. 

In a third step, we model the congruence primitives of 4>" with the help of the 
time-congruence predicates. Consider a subformula of the form f(i) + c =d f(j). 
Since there is only a finite number of modulo-c(^) congruence classes to which 
f(i) and f(j) can belong, we can use a case analysis to express this relationship. 
We replace the subformula by 

d   c(4>)/d c(4>)/d 

f\(  \J    Tcong{k+dk-)modcW{i)   ~     V    Tcong{k+c+dk,)modc{<t>){j)). 
Jt=i   t'=i fc'=i 

Subformulas of the form f(i) =<j c can be handled similarly. 
Let <f>'" be the formula resulting from eliminating all time primitives in the 

described way. The desired £2-formula X/J is obtained by adding, to 4>'", the 
following conjuncts: 

• For every state i  >  0, precisely one of the time-difference predicates 
Tdiff0,... TdiffdW is true. 

• For every state i >  0, exactly one of the time-congruence predicates 
Tcong0,... Tcong^y^ is true. 

• For all i > 0, the congruence classes of i and i + 1, and the time jump 
f(i + 1) — f(i) are related in a consistent fashion: 

Vi 
d(A"le(*A_7  Tdlffk{l+l) A Tcon^-W   -   \ 

/=0      fcOo    ^    rCOnff(k'+fc)m0dc(*)(*+l) J. 

The above theorem, combined with the earlier stated facts about £2, gives 
the following important results regarding the decidability and expressiveness of 
the theory of timed state sequences. 



Corollary [Decidability]. The validity problem for the language C\ is 
decidable. m 

Clearly, the validity problem is nonelementary even for the first-order lan- 
guage £T, as £ is a fragment of CT (recall that £ was shown to be nonelementary 
in [St74]). 

Corollary [Expressiveness]. Given a formula <j> of C\, with the free pred- 
icate symbols Pi,..-pn, the set M'T{4>) can be characterized by an u-regular 
expression over the alphabet 

V{{Pi, ■ ■ ■ Pn» x { Tdiff0,... Tdiffd{4>)} x { Tcong0,... Tcong^y,} 

. Furthermore, if <p € CT then M'T{4>) can be defined by a star-free u-regular 

expression. ■ 

2.4    Undecidable extensions and variants 

Now we justify our choice of (N, <,=) as the theory of time, by showing that 
several formalisms for real-time reasoning with an expressive power greater than 
that of C\ are highly undecidable. In [AH89], we proved the IlJ-completeness of 
certain syntactic and semantic variants of the real-time temporal logic TPTL. 
Here, these results are refined, extended, and presented in the framework of the 
theory of timed state sequences. 

Theorem [Undecidable theories of real time]. The following two-sorted 
first-order theories are YL\-complete: 

state theory time theory time function 
(from states to time) 

1 (N,<) (N,+l) / 
2 (N,<) with 

monadic predicates 
(N.-2) identity / 

3 (N,<) with 
monadic predicates 

dense linear order (D,^) 
with "successor" S: 

x -< S(x) 
x<y-* S(x) -< S(y) 

strictly monotonic / 

4 (N,<) with 
monadic predicates 

(N,+l) identity / and 
strictly monotonic /' 

Proof: First, we observe that the satisfiability of a formula <f> can, in all 
cases, be phrased as a Ej-sentence, asserting the existence of a model for <p. For 
instance, in Case 2, an interpretation I for <f> may be encoded, in first-order arith- 
metic, by finitely many sets of natural numbers; say, one for each unary predicate 
p in <t>, characterizing the states for which p holds. It is routine to express, as a 
first-order formula, that <j> holds in I. In Case 3, the Löwenheim-Skolem theorem 
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ensures the existence of countable models, and again, elementary arithmetic can 
be used to encode (and decode) such models. Thus satisfiability problem is in 
£j in each case. 

Now let us prove Sj-hardness. The problem of deciding whether a nonde- 
terministic Turing machine has, over the empty tape, a computation in which 
the start state is visited infinitely often, is known to be Ej-complete ([HPS83]). 
For ease of encoding, we prove our results using 2-counter machines instead of 
Turing machines. 

A nondeterministic 2-counter machine M consists of two counters C and D, 
and a sequence of n instructions, each of which may increment or decrement 
one of the counters, or jump, conditionally upon one of the counters being zero. 
After the execution of a non-jump instruction, M proceeds nondeterministically 
to one of two specified instructions. 

We represent the configurations of M by triples {l,c, d), where 0 < I < n, 
c > 0, and d > 0 are the current values of the location counter and the two 
counters C and D, respectively. The consecution relation on configurations 
is defined in the obvious way. A computation of M is an infinite sequence 
of related configurations, starting with the initial configuration (0,0,0). It is 
called recurring iff it contains infinitely many configurations with the value of 
the location counter being 0. 

The problem of deciding whether a given nondeterministic 2-counter ma- 
chine has a recurring computation, is Ej-hard ([AH89]). Thus, to show that 
the satisfiability problem of a language is Ej-hard, it suffices, given a nonde- 
terministic 2-counter machine M, to construct a formula <J>M such that 4>M is 
satisfiable iff M has a recurring computation. 

Ej-hardness of Case 1: We show that the monotonicity constraint on time 
is necessary for the decidability of £j-; otherwise, the time map can be used to 
encode (and decode) computations of M. We write a formula <f>M all of whose 
models correspond to recurring computations of M. A computation T of M is 
encoded by the interpretation I iff, for all i > 0, /7(3t) = /, /7(3i + 1) = n + c, 
and fI(3i+2) = n + d for the i-th configuration (I, c, d) of T. 

First, specify the initial configuration, by 

/(0) = 0A/(l) = nA/(2) = n. (*. IN IT) 

Then ensure proper consecution by adding a conjunct <f>i for every instruction 
0 < / < n of M. For instance, the instruction 1 that increments the counter C 
and proceeds, nondeterministically, to either instruction 2 or 3, contributes the 
conjunct 

Vi. 
(/(* -+- 3) = 2 V /(i + 3) = 3) A 

/(i + 5) = /(i + 2) 
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The recurrence condition can be expressed by the formula 

Vi. 3j > i. f(j) = 0. {4>RBCUR) 

Clearly, the conjunction 4>M of these n + 2 formulas is satisfiable iff M has a 
recurring computation. 

Note that <j>M uses only the successor primitive over time, and no unary 
predicates. Case 1 follows. 

Ej-hardness of Case 2: We show that a certain extremely modest relaxation 
of the timing constraints admitted in £j, namely allowing the primitive of 
multiplication by 2 over the time domain, leads to Ej-hardness. This result 
holds even under the restriction that the time function / is the identity function; 
that is, "time" acts merely as a state counter. 

To encode computations of M, we use the unary predicates Pi,...pn, rlt 

and r2. We require that at most one of these predicates is true of any state; 
hence we may identify states with predicate symbols. The configuration {/, c,d) 
of M is represented by the finite sequence of states that starts with a prstate, 
and contains precisely c restates and d r2-states. 

The initial configuration as well as the recurrence condition can be expressed 
easily. The crucial property that allows a language to specify the consecution 
relation of configurations, and thus the set of computations of M, is the ability 
to copy an arbitrary number of r-states. With the availability of multiplication 
by 2, we are able to have the i-th configuration of a computation correspond, 
for all i > 0, to the finite sequence of states that is mapped to the time interval 
[2*,2,+1). Then we can copy groups of r-states by establishing a one-to-one 
correspondence of r-states at time i and time 2t; clearly there are enough gaps to 
accommodate an additional r-state when required by an increment instruction. 

For instance, the instruction 1 that increments the counter C and proceeds, 
nondeterministically, to either instruction 2 or 3, can be expressed as follows: 

Vi. 

/  3j.[f(j) = 2f(i) A(p2(j)Vp3(i))] A 

Pl(0 

Vj. 

3j. 

V;. 

Vj. 

\ 
/(0 < fU) < 2/(0 A n(j) - 
3k.(f(k) = 2f(j) An(Jb)) 
2/(0 < j < 4/(i) Ar!(j)A 
V*.(2/(t) = /(j) - -nr^tJjA 

2/(0 < J" < 4/(0 A Mj') 
34.(2/(4) = /(j') Ar,(i)) 

/(0 < f(j) < 2/(0 A r2(j) ^ ' 
3k.(f(k) = 2f(j) Ar2(4)) 
2/(0 < f{j) < 4/(0 A r2(j) S 

[ 34. (2/(4) =/(j) Arj(i)) 

Vj" * j. 
A 

/J 
The consequent of the implication ensures that, given the configuration of M 
that is encoded by the states with times in the interval h ■ [/(i),2/(0), the 
states with times in I2: [2/(0,4/(0) encode the configuration that results from 
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executing instruction 1. The first conjunct updates the location counter. The 
second conjunct requires J2 to contain at least as many restates as 7i; together 
with the third conjunct it assures that J2 has precisely one rj-state more than 
I\. The last two conjuncts together state that the number of restates in 72 is 
the same as in 1\. 

Ei-hardness of Case 3: Now we attempt to model time over a dense domain 
TIME — D; that is, between any two given time points there is another time 
point. We show that even the simple arithmetic of linear order (<) and addition 
by a constant (S) leads to a highly undecidable theory. Examples for (D, ^, S) 
are the rational numbers (Q, <, +1), and the reals. 

As in the previous case, we employ the predicates pi,...pni TI, and r2: a 
configuration {l,c, d) of M is encoded by the state sequence Pi^r*. The proof 
depends, once more, on the ability to copy groups of r-states. This time, we 
are able to have the i-th configuration of a computation of M correspond, for 
all i > 0, to the finite sequence of states that is mapped to the time interval 
[5'(0),S,+1(0)), for some arbitrary element 0 £ D, because the denseness of 
the domain allows us to squeeze arbitrarily many states into any non-empty 
interval. 

Since every state has a unique time, and we can establish a one-to-one cor- 
respondence of Tj-states (j = 1,2) at time t and time S(t); the formula defining 
the recurring computations of M can be obtained from the formula constructed 
in Case 2, simply by replacing the operation -2 by S. 

Ej-hardness of Case 4: This case corresponds to having two time bases, / 
and /', that are updated, from one state to the next, independently of each 
other. The result holds already for the special case in which / is the identity 
function, and /' is strictly increasing. 

The encoding of M-computations is very similar to the one used in Case 
2; the i-th configuration of M corresponds to the sequence of 2* states in the 
interval [2*,2,+1). The assertion language does not include the primitive of 
multiplication by 2, which can, however, be simulated with the help of the second 
time function /'. We restrict ourselves to interpretations in which f'(i) = 2i for 
all i > 0. This condition is enforced by the conjunct 

/'(0) = 0AVi.(/'(t+l) = /'(i) + 2). 

By replacing, in the formula constructed in Case 2, every term of the form 2/(i) 
by /'(i), we obtain again a formula encoding the recurring computations of M. 
m 

Let us consider the implications of these results on developing logics for 
real-time systems, which justify our decisions in the choice of L\,. 

The fact that the monotonicity constraint on the time function is required for 
decidability (Case 1) has little consequences in the context of real-time logics, 
since we are interested only in monotonic time functions anyway. 
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When designing a real-time logic we need to select an appropriate domain for 
modeling time. Ideally, for asynchronous systems, where changes in the global 
state of the system can be arbitrarily close in time, we would like to choose 
a dense linear order. Since the ordering predicate and addition by constant 
time values are the basic primitives needed to express the simplest of timing 
constraints, the undecidability of the resulting theory (Case 3) is a major stum- 
bling block in the design of useful logics over dense time. For example, the 
real-time (branching-time) logics considered in [AD90] and [Le90] use the set of 
real numbers to model time, and hence are undecidable. 

Having constrained ourselves to a discrete time domain, we need to choose 
the operations on time admitted in the logic. While previous works have used 
addition as one of the primitives, the above theorem (Case 2) shows that it 
introduces undecidability. Using our results and techniques, we can show the 
undecidability (in fact, II{-hardness) of various real-time logics proposed earlier, 
such as [JM86], [Os87], [Ha88], and [Ko89], all of which include addition. In 
[HLP90], decidability is proved for a real-time logic with addition; this logic 
puts, however, substantial restrictions on the use of time quantifiers. 

The real-time logic RTL ([JM86]) can be viewed as a two-sorted logic with 
multiple monotonic functions from the state sort to the time sort. Our result 
(Case 4) implies that RTL is undecidable, even if we restrict its syntax to allow 
only the successor primitive over time (RTL allows addition over time). 

On the other hand, we have shown that the congruence primitives over time 
can be added to the language without sacrificing decidability. Furthermore, we 
have proved decidabilty for the second-order case as well. Thus we claim that 
the first-order theory of (N,<) with monadic predicates (for state sequences) 
combined with the theory of (N,<,=) (for time) is the theory of timed state 
sequences. 

3    Timed Temporal Logic: TPTL 

In [AH89], we introduced an extension of PTL that is interpreted over timed 
state sequences. We developed a tableau-based decision procedure and model- 
checking algorithm for this timed proposition^ temporal logic (TPTL), thus 
demonstrating its suitability for the verification and synthesis of real-time sys- 
tems. 

In this section, we study the expressiveness of TPTL. We compare the 
properties of timed state sequences expressible in TPTL with those expressible 
in the underlying classical language CT. TPTL is shown to correspond to an 
expressively complete fragment of CT; that is, the set of models of any CT- 
formula can be characterized by a TPTL-formula. This result is important as 
it establishes TPTL as a sufficiently expressive specification language; it shows 
that the gains in complexity in moving from the full first-order theory of timed 
state sequences (nonelementary) to TPTL (doubly exponential) are not achieved 
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at the cost of expressive power. 
We also look at two natural extensions of TPTL that correspond to larger 

fragments of CT and, therefore, are still decidable. However, both general- 
izations turn out to be nonelementary, thus affirming our choice of TPTL as 
verification formalism. TPTL can, on the other hand, be generalized to attain 
the full expressiveness of the second-order language £|, at no cost in complexity. 

3.1    Syntax and semantics 

We briefly recall the definition of TPTL. This real-time temporal logic is ob- 
tained from PTL by adding a time quantifier "x." that binds the associated 
variable x to the "current" time: x. 4>{x) holds at state CT, of the timed state 
sequence (a,r) iff <t>(r(i)) does. For example, in the formula Ox.<f>, the time 
reference x is bound to the time of the state at which <j> is "eventually" true. 

This extension of PTL with references to the times of states admits the 
addition of timing constraints; that is, atomic formulas that relate the times 
of different states. The formulas of TPTL are built from propositions and 
timing constraints by connectives, temporal operators, and time quantifiers. For 
instance, the typical bounded response property that "Every p-state is followed 
by a g-state within time 1" can be stated as 

□i.(p - Oy.(q A y<x+l)). (4>BR) 

Let us be more precise. Given a set P of proposition symbols and a set V 
of variables, the terms TT and formulas <j> of TPTL are inductively defined as 
follows: 

• 7T := X | C | I + c 

• 4> ■■= P I *i < *2 | *i =d T2 | false | 0i — 4>2 I 04> I 4>i U fa I X. (f> 

for x € V, p € P, c > 0, and d > 2.3 Additional temporal operators such as O 
(eventually) and G (always) are defined in terms of O (next) and U (until) as 
usual. 

The formulas of TPTL are interpreted over timed state sequences.4 The 
timed state sequence p = (c, r) satisfies 4> iff (p, 0) \=£Q $ for the initial envi- 
ronment £0: V — {r(0)}, where the truth predicate \= is inductively defined as 
follows: 

3 TPTL as originally defined in [AH89] differ« lyntactically in that the time quantifier» are 
coupled with the temporal opearaton. Observe that thi» coupling does not restrict us in any 
essential way: by separating the time quantifier "i." from the temporal operators, we admit 
more formulas (such as D(z.tf — x. «/>)), for each of which there is, however, an equivalent 
formula in which every quantifier follows a temporal operator (Di. (4> —. V)). 

4In [AH89], timed state sequences are required to satisfy the two additional conditions of 
mtUality (x = 0) and progress (Dx.Oy.y > *). These requirements make sense for any real- 
time specification language, but we have just demonstrated that they are expressible within 
TPTL itself. 

15 



• (P> i) \=£ P  iff P € Oi 

• (P.*) Nf *i < (=c) *2   iff £(*i) < (=d) £(ir2), 
for £(x + c) = £(x) 4- c and f (c) = c 

• (P. *) ^5 false 

• (P> *) t=f 0i -* 02   iff (p, 0 t=£ 0i implies (p, i) (=^ <£2 

• (P>*)l=5 O0iff (P,i+1) Nf0 

• (p,i) |=£ 4>\U(f>2   iff (p,j) f=£ 02 for some j > i, and 
(p, A) f=£ 4>i for all i < A < j 

• (P.*) \=£ M  iff (P,*) Nf[r(i)/I] 0- 

(Here £[2/x] denotes the environment that agrees with £: V —* TIME on all 
variables except x, which is mapped to t £ TIME.) Note that every TPTL- 
formula is equivalent to its closure, in which all free variables are bound by a 
prefix of time quantifiers. 

Every TPTL-formula <f> can be translated into CT, while preserving the set 
of models Mrfa- For every proposition p of TPTL, we have a corresponding 
unary state predicate p(i) of CT- A closed TPTL-formula 4> is true over a timed 
state sequence p iff the ^-formula JFb(0) is true over p, where JF\ (for i > 0) is 
inductively defined as follows: 

• Fi{p)=p{i) 

• Fifa < T2) = *i < 7r2,    Fi(T! =d x2) = irx =d r2 

• J-(false) = false,    Fifa - fa) = Fifa) - F<(*2) 

• ^.(00) = Fi+lfa 

• FifaUfc) = 3j > i. {Fjfa) A Vt < k < j. Fkfa)) 

. Fi(z.4>) = Fifa[f(tyz]. 

(We write 4>{f(i)/x] for the formula that is obtained from <f> by replacing all free 
occurrences of x by f(i).) 

For example, the bounded response property 4>BR is equivalent to its trans- 
lation F0{4>BR)- 

Vt > 0. (p(i) - 3j > i. (q(j) A f(j) < f(i) + 1)). 

Note that the mapping Fo embeds TPTL into CT; its range constitutes a 
proper subset of all well-formed £j-formulas. Thus, just as PTL corresponds 
to a subset of £, we may view TPTL as a fragment of £T: quantification over 
the state sort is restricted to the "temporal" way of PTL, while quantification 
over the time sort is prohibited entirely. 
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3.2     Expressiveness 

In [AH89] we have shown that, in a pleasing analogy to PTL versus £, TPTL 
constitutes in fact an elementary fragment of C-r: the satisfiability of a given 
TPTL-formula with N logical and temporal connectives, and K as the product 
of its constants, can be decided in time 2°^N'K\ To complete this analogy, we 
show here that the restrictions imposed by TPTL on the quantification in Cj- 
formulas do not diminish its expressive power. In other words, any property of 
timed state sequences that can be specified in £7 can already be specified in 
TPTL. 

The natural embedding F0 gives, for any TPTL-formula <j>, an equivalent 
£r-formula Fo(4>), thus demonstrating that C-r is as expressive as TPTL. By 
the following theorem, the converse is also true. 

Theorem [Expressive completeness of TPTL]. For every formula <f> of 
Cj, there exists a formula ip of TPTL such that M.T{4>) = M.T[I}>). m 

Proof: Given an ^-formula <j>, we construct an equivalent TPTL-formula 
ip in four steps. By the theorem on the regular nature of the time primitives 
we obtain an ^-formula 4>', with additional time-difference predicates Tdifft 

and time-congruence predicates Tcongt, such that Mj(^) = M(4>'). By the 
expressive completeness of PTL, there is a PTL-formula <p" such that M(4>') 
equals M{</>") ([GPSS80]). 

We transform <f>" into an equivalent PTL-formula cj>'" such that every time- 
difference proposition Tdifft is either not within the scope of any temporal 
operator, or immediately preceded by a next operator. This can be done by 
repeatedly rewriting subformulas of the form 0(<£i —* #2) and 4>\U$2, to 
Oi — 0<t>2 and fa V (fa A (Oi)"(02)). respectively. 

Define the constants d(<j>) and c(<f>) as in Section 2.3. From </>'" we arrive 
at V by replacing every time-difference proposition Tdifft that is not within 
the scope of a temporal operator by x. x = t (and x. x > t, if t — d(<f>)), every 
subformula O Tdifft by x.Qy. y = x +1 (and x.Qy. y > x +1, if t = d(<j>)), and 
every time-congruence proposition Tcongt by x.x =e(^>) t- ■ 

We conclude the discussion of properties expressible in TPTL by interpreting 
the logic over pure ("timeless") state sequences, and investigating the expressive 
power of the congruence relations. 

3.2.1    Timeless expressiveness 

With every TPTL-formula 4> we can associate a set of state sequences by pro- 
jecting the timed state sequences in M.-r(4>). Given a state sequence a and a 
TPTL-formula <f>, let a € A4g(</>) iff there is a time map r such that (CT,T) |= <f>. 

Interpreted in this fashion, TPTL can specify strictly more properties of 
state sequences than PTL. For example, the property even(p), that "p holds in 
every even state," is not expressible in pure PTL ([Wo83]). In TPTL, we may 
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(ab)use time to identify the even states as precisely those in which the time does 
not increase: 

Oy. x - y A Dx.Qy. (x = y -> p A Qz. {z > y /\ O-" = *))• 

The following theorem shows that the expressive power of TPTL with respect 
to state sequences is that of the second-order language £2, or equivalently, u- 
regular expressions. 

Theorem [Timeless expressiveness of TPTL]. For every formula 4> of 
TPTL, there is a formula ip of C2 such thai M^(<j>) = M.(ip), and vice versa, m 

Proof: Given a TPTL-formula <f>, we know how to construct an equivalent 
£;r-formula <j>'. By the theorem on the regular nature of the time primitives 
we obtain an £-formula <f>", with additional time-difTerence predicates Tdifft 

and time-congruence predicates Tcongt, such that M^.(tj>') — M(<f>"). The C2- 
formula yj that binds all of the new time predicates in (j>" by an existential prefix 
is easily seen to have the desired models. 

In order to show the second implication, we use a normal-form theorem for 
C2: given an £2-formula xp, there is an equivalent £2-formula V' of the form 
3pi... 3pn. rp'M, whose matrix ip'M contains no second-order quantifiers ([BÜ62]). 
We construct a TPTL-formula <f> that characterizes the models of ip', by using 
the (existentially quantified) time map to encode the interpretation of the unary 
predicates p:(1 < j < n), which are bound in rp'. 

Assign to every subset Jt C {l,...n} a unique code t € TIME. By the 
expressive completeness of PTL, M(ip'M) = M(V^) for some PTL-formula 
^Af ([GPSS80]). From VAT, we obtain <f> by replacing every proposition p,, 
1 < J < n> by z-Ol/- V>ej, y = x + t. It is straightforward to establish a one- 
to-many correspondence between the models I — {cr,p[,.. .p£) of ip'M and the 
timed state sequences (a, r) satisfying <j>: given I, let r(i + l) = r(i) +1 such 
that Jt = {j | Pjii)}, and given r, let pj(i) iff j € JT{i+i)-T(i) (assume that 
j £ Jt if t is no proper code). ■ 

It follows that £j, with the time function existentially quantified, has the 
full expressive power of the second-order language C2. In fact, the proof given 
above shows that equality and successor over the time sort are sufficient to 
achieve this timeless expressiveness. 

3.2.2    Expressive power of congruences 

If we disallow the use of congruence relations in TPTL, the resulting logic is 
strictly less expressive. Consider the following formula <j>: 

Dx.{x=2 0 — p). 

It characterizes the timed state sequences in which p is true at all even times. 
We show that this property is not expressible without congruence relations. 
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Suppose that the TPTL-formula j), which does not contain any congruence 
relations, were equivalent to <\>. Let c be the largest constant occurring in ij>. It 
is easy to convince yourself that tp cannot distinguish between the timed state 
sequences pj = (er, Xi. (c + 1)) and p2 = (a, Xi. (c + 2)), for any a. Yet if p is 
continuously false in a, only one of p1 and p2 satisfies <j>. 

Note that TPTL without congruence relations has the same expressive power 
as the first-order language CT without congruences. However, as has been 
pointed out in the previous subsection, the congruence primitives do not affect 
the "timeless" expressiveness of these formalisms; for example, we have demon- 
strated that the property that "p holds in every even state" (as opposed to every 
state with an even time) can be specified without congruences. 

3.3    Nonelementary extensions 

We have seen that TPTL restricts CT to "temporal" quantification over the 
state sort and no quantification over the time sort. Can we relax these re- 
strictions without sacrificing elementary decidability? Arbitrary quantification 
over the state sort encompasses full £ and is, therefore, clearly nonelementary. 
In the following subsection, we study the generalization of TPTL that admits 
quantification over the time sort, and show it to be nonelementary as well. 

Then we try to add past temporal operators to TPTL, an extension that 
does not affect the complexity of pure PTL. Therefore it is quite surprising 
that the past operators render TPTL nonelementary. 

3.3.1    TPTL with quantification over time 

Several authors, such as [Os87] and [Ha88], have proposed to use first-order 
temporal logic with a single dynamic (state) variable, T, that represents the 
time in every state, for the specification of real-time properties. For instance, 
they write our typical bounded response property <I>BR from above essentially as 

OVz.(p A T-x — 0(g A T< z+l)), 

using auxiliary rigid (global) variables like x to refer to the time (i.e., the value 
of T) of different temporal contexts. 

Eliminating the state variable T, we see that this notation corresponds to 
TPTL extended by classical universal and existential first-order quantification 
over time: 

Oy. Vi.(pAj)=i -. Oz.(q A z <x+ 1)). 

We call this generalization of TPTL, whose syntax definition is supplemented 
by the new clause "If <f> is a formula and x € V, then 5x.<t> is also a formula," 
quantified TPTL or TPTLg. Given a timed state sequence p, an index i > 0, 
and an environment £, the classical quantifiers are interpreted as usual: 

(p,i) \=£ 3x.(f>  iff  (p,i) \=£[t/x] <t> for some t € TIME. 
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TPTLg seems, on the surface, more expressive than TPTL, because it can 
state properties of times that are not associated with any state. But it is easy 
to see that TPTL3 can still be embedded into CT (let Fi(3x.<f>) = 3x.Fx(<f>)). 
The satisfiability of TPTLg is, therefore, decidable, and its expressive power, 
measured as the sets of timed state sequences specifiable in the logic, is the same 
as that of TPTL. 

We show that TPTL3 is, however, not elementarily decidable. This provides 
additional justification for our preference for TPTL over the existing notation 
with first-order quantifiers over time: prohibiting quantification over time not 
only leads, as argued in [AH89], to a more natural specification language, but is 
necessary for the existence of feasible verification methods, such as the tableau 
techniques for TPTL. 

Theorem [Complexity of TPTL3]. The satisfiability problem of TPTL3 

is nonelementary. m 

Proof: We translate the nonelementary monadic first-order theory of (N, <) 
([St74]) into TPTL3: by forcing the time to act as a state counter (using 
Ox.Qy. y = x + 1), state quantifiers can be simulated by the time quantifiers of 
TPTL3. 

Given a formula 4> of £, we construct a formula i> of TPTL3 such that <f> 
is satisfiable iff the conjunction of ^ and Dx.Qiy.y — x + 1 is satisfiable. The 
formula ip is obtained from 4> by replacing every atomic subformula of ..:e form 
p(i) by Ox. (p A x = i) (read the quantifiers of # as quantifiers over the time 
sort). ■ 

3.3.2    TPTL with past 

In [LPZ85], PTL is extended with the past temporal operators © (previous) 
and 5 (since), the duals of O and U. These operators can be added at no extra 
cost, and although they do not increase the expressive power of PTL, they allow 
a more direct and convenient expression of certain properties. 

Let TPTLp be the logic that results from TPTL by adding the following 
clause to the inductive definition of formulas : "If #1 and fa are formulas, then 
so are Qfa and fa S fa.n The meaning of the past operators is given by 

• (P>0 Nf Q4> iff i = 0 or (p, t - 1) [=£• fa and 

• (p, i) |=£ fa S fa   iff  (p, j) j=£ fa for some j < i and 
(p, k) ^£ fa for all j < k < i. 

Clearly, TPTL/> can still be embedded into CT: 

• Fo(©fa = true,    Ft+1(Qfa = Fi(fa 

• Ft(faSfa) = 3j < i.(Fj(fa) A Vj < k < i.Fk(fa)). 
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Hence the satisfiability of this logic is, again, decidable, and its expressive power 
is no greater than that of TPTL. 

However, unlike in the case of PTL, there is a surprisingly heavy price to be 
paid for adding the past operators. 

Theorem [Complexity of TPTLP]. The satisfiability problem of TPTLp 
15 nonelementary. m 

Proof: Again, we are able to use the nonelementary nature of the monadic 
first-order theory of (N, <). By adopting time as a state counter, we can simulate 
true existential quantification over time by O, because<S> allows us to restore the 
correct temporal context. 

Given a formula cf> of £, we construct a formula ip of TPTLp such that $ is 
satisfiable iff the conjunction of i> and Ox.Oy. y = x + 1 is satisfiable. The first 
step in translating <j> is the same as in the proof of the nonelementary complexity 
of TPTLg. In a second step we replace every subformula of the form 3z.<p by 
y. (Oz.<3>2. (z = yAtp) V<S>i. Oz. (z = y A tp)). u 

3.4    Timed ETL 

PTL does not have the full expressive power of the second-order language £2; 
recall that the property even(p), that "p is true in every even state," 

3q. [q{0) A Vi. (q{i) - p{i) A -.,(» + 1) A q(i + 2))], 

is not expressible in PTL ([Wo83]). That is why Wolper has defined extended 
temporal logic (ETL), which includes a temporal operator for every right-linear 
grammar. ETL has the same expressiveness as £2, or equivalently, w-regular 
expressions, and yet a singly exponential decision procedure. 

The situation for TPTL is similar: there is no TPTL-formula whose models 
are precisely the timed state sequences in which, independent of the time map, 
p holds at every even state. 

Suppose there were such a formula <j>; we show that this would imply the 
expressibility of even(p) in £. First construct an ^-formula <f>' that is equivalent 
to <j> and contains the additional time-difFerence and time-congruence predicates 
Tdifft and Tcongt, as usual. Then replace, in 4>\ all occurrences of Tdifft and 
Tcongt by true or false depending on whether t - 0. This simplification does 
not affect the truth of the formula over interpretations all of whose times are 
permanently 0. Thus, the resulting formula rp is satisfied by a state sequence a 
iff (a, Xi. 0) € MT(4>); that is, iff p is true in every even state of a. 

However, analogously to PTL, we are able to generalize TPTL to timed 
extended temporal logic, TETL, by introducing temporal grammar operators. 
TETL is shown to have the full expressive power of C.\, while being no more 
expensive than TPTL. 
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3.4.1     Syntax and semantics 

Given a set P of propositions symbols and a set V of variables, the terms of 
TETL are the same as in TPTL. The formulas of TETL are inductively denned 
as follows: 

<f> '■= P I *i < ""2 I ""I. =d *2 I false | 4>i -* fa | Q{<t>l, . . . 4>m) I X. if) 

where x £ V,p £ P, d>2, and £(ai,... a™) is a right-linear grammar with the 
m terminal symbols a\,.. .am.5 

As with TPTL, TETL-formulas are interpreted over timed state sequences. 
Given a timed state sequence p, an index i > 0, and an environment £, the 
semantics of the grammar operators is denned by the following clause: 

(p, i) ^=£ G(<f>i, ■ ■ ■ 4>m) iff there is a (possibly infinite) word 
w = avlttavllaW7... generated by Q(ax,...am) such that 
(P, i + j) \=£ <t>wj for all j > 0. 

All temporal operators of TPTL are expressible by the grammar operators of 
TETL; for example, the TPTL-operator D corresponds to the grammar Qn{a) 
with the only production Ga{a) —> aQa(a) (we identify grammars with their 
starting nonterminal symbols). The formula even(p), which is not expressible 
in TPTL, can be stated as Geven(true,p), for the production 

^et)en(aii02)   ~*  ^lty Gtven{o>l, 0.2)- 

3.4.2    Complexity 

By putting together the tableau methods for ETL ([Wo83]) and TPTL ([AH89]), 
we develop a doubly-exponential-time decision procedure for TETL. This pro- 
cedure is near-optimal; we go on to show the satisfiability problem for TETL to 
be EXPSPACE-complete. 

Our presentation follows [AH89] closely.6 For the sake of keeping the presen- 
tation simple, we assume that all grammar operators correspond to productions 
of the form 

a(ai,...aTO)— oj, \aiag'{ail,...ajJ. 

Furthermore, all TETL-formulas contain a single free variable, T (which refers 
to the initial time), and only timing assertions of the forms x < y + c, x + c <y, 
and x =d y + c, for d > c > 0. This can be achieved by renaming of variables, 
and easy simplifications. 

5Like ETL, TETL can alternatively be defined using automata connectives for all Büchi- 
automata, instead of grammar operators ([WVS83]). 

6The careful reader may have noticed that we use, throughout, time-difference propositions 
TdiSt that indicate the time increase t from the predecessor states, as opposed to [AH 89], 
where these propositions represent the time difference to the successor states. This is nec- 
essary, because we have relaxed the tnitiality condition T(0) = 0 on timed state sequences 
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As with TPTL, for checking the satisfiability of a given TETL-formula <j>, 
we may restrict ourselves to timed state sequences p = (a, T) all of whose time 
steps r(i + 1) — r(i), i > 0, are bounded by the product K of all constants 
occurring in <j> (a constant c > 0 occurs in <p iff <t> contains a subformula of the 
form x < y + (c — 1) or x + (c — 1) < y, or the predicate symbol =c). The time 
information in p has, therefore, finite-state character; it can be modeled by the 
new propositions Tdifft, 0 <t < K, representing the time differences t between 
successive states. 

This allows us to modify the tableau-based decision procedure for ETL 
([Wo83]), to handle formulas with time references. It is, in fact, included in 
our procedure as the special case in which <f> contains no timing constraints. 

The key observation underlying all tableau methods for temporal logics is 
that any formula can be split into two conditions: a present requirement on the 
initial state and a future requirement on the rest of the model. For example, 
the eventuality 0<f> can be satisfied by either <f> or Q04> being true in the initial 
state. 

In order to propagate the requirement on the successor state properly, all 
timing constraints need to be updated to account for the time increase t from 
the initial state to its successor. Consider the formula Q4>(T), an^ recall that 
the free occurrences of T are references to the initial time. This condition is 
true in the initial state iff the next state satisfies the updated formula 4>(T - t). 

If the number of conditions generated in this way is finite, checking for satis- 
fiability is reducible to checking for satisfiability in a finite structure, the initial 
tableau. For t > 0, a naive replacement of T by T — t would, however, succes- 
sively generate infinitely many new formulas. Fortunately, the monotonicity of 
time can be exploited to keep the tableau finite; the observation that z is always 
instantiated, in the "future," to a value greater than or equal to T, allows us 
to simplify timing assertions of the form T < x + c and x + c < T to true and 
false, respectively. 

We define, therefore, the formula #' that results from updating all time 
references T in <f>, inductively as follows: <f>° = 4>; and (/>t+1 is obtained from 
ft by replacing all terms of the form T -f c (for c > 0) by T + (c - 1), and all 
subformulas of the form T < x + c, x + c <T, and T =d 1 + c (for c > 0) by 
true, false, and T =d x + ((c + 1) mod d), respectively. 

Now let us collect all conditions that may arise by recursively splitting a 
formula into its present and future parts. The closure Cl(<f>) of a TETL-formula 
4> is the smallest set containing <f> that is closed under the following operation 
Sub: 

• Su6(V>i — ^2) = {V'i,V'2} 

• Su6(OV0 = {1>t\0<t<K} 

. Sttk(ff(^1,...^TO)) = {^l,^1,Off'(^ll...v»iJ> 
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• Sub(x.iP(x)) = {i>(T)}. 

Let JV be the number of connectives, quantifiers, and grammar operators in <f>, 
where every grammar operator is counted as the number of nonterminal symbols 
in the corresponding grammar. By induction on the structure of <f>, it can be 
shown that \Cl(<j>)\ <2NK. 

Tableaux for TETL are finite, directed state graphs (Kripke structures) with 
local and global consistency constraints on all states. The states are represented 
by consistent sets of formulas that are closed under "subformulas," expressing 
conditions on the current state and the successor states. Every state contains, 
in addition, a proposition Tdifft, 0 < t < K, which denotes the time difference 
to the predecessor states. 

Formally, we define the states as the maximally consistent subsets of the 
finite universe 

Cl'((j>) = Cl(<j>) U { Tdifft | 0 < t < K} 

of TETL-formulas. The set <$ C Cl~{<j>) is (maximally) consistent iff it satisfies 
the following conditions (where all formulas range only over Cl" (</>)): 

• Tdifft € # for precisely one t with 0 < t < K; this t G TIME is referred 
to as Lastdiff($). 

• false £ §. 

• Vi —» V"2 € $ iff either Vi £ $ or i>2 £ $• 

• G(ipi,... i>m) € $ iff either ^n G $, or both Vi3 € $ and 

• x.\j){x) € $ ifFV(T) € #• 

• T ~ T + c € § iff 0 ~ c holds in N (for ~ one of <, >, =a, or its negation). 

Now we are ready to define the initial tableau in a way that ensures the 
global consistency of both temporal and real-time constraints as well. The initial 
tableau T{<j>) for the TETL-formula <f> is a directed graph whose vertices are the 
consistent subsets of Cl"{<j>), and which contains an edge from $ to * iff, for all 
O € Cl{4>), 

Oi> € #  iff VLa,tdtf(*) € *. 

The significance of the (finite) initial tableau T(4>) for the formula 4> is that 
every model of <j> corresponds to an infinite path through T(4>) along which 
all eventualities are satisfied ("fulfillable") in time, and vice versa. An even- 
tuality -<G{i>i,-- ■ V"m) is called fulfillable along the finite path $o$i-$t iff 
either V,, £ $o, or k > 1 and ^Q'(i>n,...^.J*"*W(»>) is fulfillable along 
$i#2 • •• $k- By combining the corresponding arguments for ETL and TPTL, 
it can be shown that a TETL-formula <j> is satisfiable iff T{4>) contains an infinite 

24 



path $o#i$2 ••• such that <j> £ $0 and, for every i > 0, ^Q{il>lt.. .i/)m) £ 4>, 
implies that -£(Vi, • • • i>m) is fulfillable along *,*l+1 ...*k for some k > i. 

This result suggests a decision procedure for TETL: construct the initial 
tableau, and employ the usual, polynomial techniques for checking whether the 
tableau contains an infinite path along which all eventualities are satisfied. Since 
the initial tableau contains 0(K ■ 2N'K) states, each of size O(N-K), T{4>) can 
be constructed and checked for infinite paths in deterministic time exponential 
mO(N-K). 

Theorem [Deciding TETL]. The satisfiability of a TETL-formula <f> w 
decidable in deterministic time exponential in O(N-K), where N is the number 
of connectives, quantifiers, and grammar operators in <p, and K is the product 
of all constants occurring in 4> (recall that every grammar operator is counted 
as the number of nonterminal symbols in the corresponding grammar). ■ 

Note that the length L of a formula whose constants are represented in 
binary, is 0(N + log K). So we have a decision procedure for TETL that is 
doubly exponential in L (although only singly exponential in N, the "untimed" 
part, and thus, singly exponential for ETL). 

The algorithm outlined here may be improved along the lines of [Wo83] to 
avoid the construction of the entire initial tableau. This does not, however, lower 
the doubly exponential deterministic-time bound; in fact, TETL is EXPSPACE- 
hard. 

Theorem [Complexity of TETL]. The satisfiability problem of TETL is 
EXPSPACE-compiete. ■ 

Proof: To show that TETL is in EXPSPACE, we follow the argument that 
ETL is in PSPACE, which develops a nondeterministic version of the tableau 
decision procedure and then applies Savitch's theorem ([Wo83]). EXPSPACE- 
hardness follows immediately from the corresponding result for TPTL ([AH89]). 

3.4.3    Expressiveness 

Although TETL is no harder than TPTL, we have demonstrated that its expres- 
siveness is strictly greater, by specifying the property even(p). The following 
theorem characterizes the expressiveness of TETL as equivalent to the second- 
order language L\. 

Theorem [Expressiveness of TETL]. For every formula <t> of TETL, 
*Aere exists a formula yj of L\ such thai MT{4>) = MT(i>), and vice versa, m ' 

Proof: We extend the translation F0 that embeds TPTL into CT to ac- 
commodate the grammar operators of TETL; the target formulas will contain 
second-order quantifiers over unary predicates, and thus belong to C\,. 

Again, assume that all grammar operators correspond to productions of the 
form 

g(a1,...am)^ail \ CLX2G'{au,...aJn). 
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We add the following clause to the definition of Fk (k > 0): 

Fk(go(4>l,...d>m)) = 3pg:...3pgu.(pg(k) A\/k'>k.      /\     *£,(*')) 
0<1<M 

for some new unary predicate symbols Pgn,---Pg , where QO,---SM are all 
the nonterminal symbols occurring in the grammar Go(&i, ■ ■ -<hn), and 4>g{k) 
stands for the £|,-formula 

Pg(k) - FtihJ v (Fk(4>ia) A pg.(k + l)). 

Consider an arbitrary timed state sequence p. We show, by induction on the 
structure of <f>, that (p, k) \=£ <f> iff (p, k) (=£ Fk{</>) for all k> 0 and environ- 
ments £. 

The crucial case that <f> has the form £o(#i, ••■4>m) is derived as follows. 
To establish the existence of appropriate predicates pg   (0 < / < M), let pg 

be true in state k' > k iff (p, A') hf £1(^1. ■ ■ ■ &»)• On the other hand, given 
the predicates pg^ satisfying 4>g (k') for all k' > k, we can construct a word 
w = ow,]aWloW3... generated by g0{ai,...am) such that (p,k') \=£ <j>v,k,_k- 

It follows that, for any TETL-formula <j>, the £^-formula F0{4>) is equivalent 
to 4>- The argument for the expressive completeness of TETL with respect to C\ 
is analogous to the corresponding proof for TPTL and CT (use the expressive 
completeness of ETL with respect to C2). ■ 

Let us complete the expressibility picture by a few remarks. The timeless 
expressiveness of TETL is clearly again that of the second-order language £2, 
and thus no more than that of TPTL. It is also immediate that the Congruence 
relations contribute even to the expressive power of TETL (and £^,) in a non- 
trivial way; the property that p is true at all even times is still not expressible 
without congruence relations. 

3.4.4    TPTL with quantification over propositions 

There are several alternatives to the grammar operators of ETL. PTL can be 
extended by fixed-point operators (obtaining a variant of the propositional p- 
calculus of [Ko82]) or second-order quantification over propositions (QPTL of 
[Si83]) in order to achieve the full expressive power of C2. While fixed-points 
can be viewed as generalized grammar operators and yield to tableau methods, 
QPTL is nonelementary. 

It is straightforward to show that both extensions have, indeed, the ex- 
pected, analogous effect in the TPTL-framework; they give decidable real-time 
specification languages with the expressiveness of L\,. However, timed QPTL 
is, as a superset of QPTL, nonelementary, and thus unsuitable as a verification 
formalism. 
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4    Metric Temporal Logic: MTL 

Several authors have tried to adapt temporal logic to reason about real-time 
properties by interpreting its modalities as bounded operators. For example, 
[Ko89] suggests the notation 0<c to express "eventually within time c." Similar 
temporal operators that are subscripted with constant bounds are used in [Ha88] 
and [EMSS89]. 

In this section, we extend PTL by such bounded temporal operators and 
interpret the resulting logic over timed state sequences. For example, the typical 
bounded response property that "Every p-state is followed by a g-state within 
time 1" will be written as 0(p —» <0<! q). 

It is easy to see that we have, in fact, only obtained a notational variant of 
a subset of TPTL (rewrite every subformula 0<c 4> as x. Oy. (y < x + c A 4>)). 

We show that this formalism is interesting, and worth studying in its own 
right, for two reasons. First, and surprisingly, it is already as expressive as full 
TPTL. And secondly, it may, unlike full TPTL, be enriched by past operators, 
thus resulting in what we call (following [Ko89]) metric temporal logic (MTL), 
without sacrificing its elementary decidability. 

Hence we are able to conclude that MTL represents, again, a suitable spec- 
ification and verification formalism: just like TPTL, MTL corresponds to an 
expressively complete and yet elementary fragment of CT with a tableau-based 
decision procedure. But the two subsets of £j corresponding to TPTL and 
MTL, respectively, are not identical; either one of them can state certain prop- 
erties more directly and succinctly than the other one, and may therefore be 
preferred for some specifications. 

4.1     Syntax and semantics 

Given a set of propositions P, the formulas <f> of MTL are defined inductively 
as follows : 

4>:=p\ false | <j>x -+ fa | 0~<^ I Q~c<t> I 4>i U~c 4>2 I <t>i £-e 4>2 

for p € P, ~ being one of <, =, >, or =d, and c > 0, d > 2. The defined 
operators 0^e<t> and 0^.c 4> stand for trueU^c(f) and ->0^c ->4>, respectively; 
other abbreviations include 0>c <f> (for 0=c <j> V 0>c 4>) and unbounded O (for 
O>o). 

The formulas of MTL are interpreted over timed state sequences. Instead of 
giving MTL its own semantics, we translate any MTL-formula <j> into a TPTLp- 
formula G(4>) (let ~ stand for <, >, or =): 

• G(P) = P 

• G(false) = false,    G^ -. <t>2) = G{<f>l) — G(<f>2) 

• G(0..c <t>) = x.Oy- (y - x + c A <t>),   G{Q-iC <t>) = Qy. (y =d c A <p) 
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• G(G~c <S>) = x.Qy. (x ~ y + c A $),    G(0HjC <j>) = Qy. {y =d c A <f>) 

• G(<f>iU^c <j>2) = x.(<t>iUy.(y~~ x + c A <f>2)) 

• G((f>i U=iC <j>2) = 4>i U y. (y =d c A <j>2) 

• G(<f>i S^c <j>2) = x. (fa S y. (x ~ y + c A <j>2)) 

• G(<f>i S=iC <f>2) = <t>1Sy.(y=dc A </>2). 

Note that 0=3p holds in a state if p is true in some future state whose time is 
3 greater than the current time. However, 0=3ip holds in a state if p is true 
in some future state whose time is odd; the congruence subscripts refer to the 
absolute times of states. 

It follows that both TPTL and MTL are orthogonal fragments of TPTLj> 
and, hence, C?: while TPTL prohibits past operators, MTL corresponds to a 
subset of TPTLp wherein all timing constraints relate only variables that refer 
to "adjacent" temporal contexts. 

4.2    Complexity 

We show that the satisfiability problem of MTL is much simpler than the corre- 
sponding nonelementary problem of full TPTLp, by generalizing the standard 
tableau-decision procedure for PTL ([BMP81]) to MTL. 

The tableau algorithm for MTL uses the techniques developed for TPTL 
in [AH89]. The crucial property that guarantees the finiteness of the tableau 
being constructed is that, in both cases, the temporal precedence between any 
two temporal contexts related by a timing constraint is uniquely determined. 
Before giving a formal definition, we indicate first how the algorithm proceeds 
for a sample input. 

Suppose that the time increases by one unit from a state to its successor (in 
general, the time increase between states can be bounded for any given formula, 
and thus reduced to a finite number of different cases). In order to satisfy, say, 
0<c 4> in the current state, we have to satisfy either <p now, or 0<c_i <j> in the 
succeeding state. Continuing this splitting of requirements into a present and a 
future part, we will eventually arrive at 0<i <j>, forcing (f> to be satisfied in the 
current state. 

Since every input formula rp generates only a finite number of requirements 
on states in the described fashion, V is satisfiable iff it is satisfiable in a finite 
tableau. By bounding the maximal size of this tableau, we obtain the following 
result. 

Theorem [Deciding MTL]. The satisfiability of an MTL-formula 4> can be 
decided in deterministic time exponential in 0(C ■ N), where N is the number 
of propositional and temporal connectives in 4>, and C — 1 is the largest constant 
occurring, as a subscript, in 4>. m 
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Proof: Throughout, let ~ stand for <, >, or =. Define the closure Cl(<f>) 
of the MTL-formula <f> to be the smallest set containing <j> that is closed under 
the following operation Sub: 

• Su6(y>i -»V2) = {^1.^2} 

. sub(0^ci>) = m 

.   5lli(^i U„c 1>3) = {i>l,lh, 0(V>1 W V-2)} U {0(^1 "~e- V-2) I 0 < C' < C] 

• Sub(^ u=iC fa) = {Vl, V-2, CWi w=<e ifc)} 

• SUfc(Vi S~c V2) = {V-i, V>2,0(V<i ^ V2)} U {©(V-i S~e< rh)' I 0 < c' < c} 

• 5l»J(^i 5=JC V2) = {V>1, V-2,©^! S=dc i>2)}- 

If C-1 is the largest constant occurring in <f>, and N is the number of connectives 
(propositional and temporal) in <f>, then |C/(^)| < 2C-N. 

As in TPTL, for checking the satisfiability of <j>, we may restrict ourselves 
to timed state sequences p = (o",r) all of whose time steps r(i + 1) - r(i), 
i > 0, are bounded by the product K of all constants occurring, as subscripts, 
in 4> (count a subscript of the form =<j c as d). The time information in p 
has, therefore, finite-state character; it can be modeled by the new propositions 
Tdifft and Tcongt,, 0 < t < K and 0 < t' < K, representing, in any state, the 
time difference t from the predecessor state and the remainder t' modulo K of 
the current time. For ease of presentation we use, in addition, the propositions 
Tdiff't, 0 < t < K, to represent the time difference t to the successor state. 

Let Cl"((f>) denote the set obtained from Cl{<t>) by adding the new proposi- 
tions Tdifft, Tdiff't, and Tcongt. A subset $ of Cl'(4>) is called (maximally) 
consistent iff it satisfies the following conditions (where all formulas range only 
over the finite set Cl"((f>)): 

• Tdifft € * for exactly one t with 0<t<UC;thist€ TIME is referred to 
as Lastdiff($). 

• Tdifft € * for exactly one t with 0 < t < K; this t € TIME is referred to 
as Nextdiff($). 

• Tcongt € $ for exactly one t with 1 < t < K\ this t € TIME is referred 
to as Congclass($). 

• false £ $. 

• V>i —* i>2 € * iff either Vi £ * or ^2 € $• 

• i>iU=cT}>2 € $ iff either c = 0 and V>2 € $, or Vi € $, Nextdiff{$) < c, 
and 0{i>iU=c-Ncztdiff(*)i>2) € #• 
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• Vi U<c V-2 G * iff c > 0, and either ^2 € $, or Vi € #, Nextdiff(§) < c, 
and OCV'i^c-Afeitd.jfff*)^) € #. 

• V>i ^>c V>2 € # iff V>i € $, and either Neztdiff($) < c and 
0(i>iU>c-Nextdiff(*)ip2) G 4>, or Nextdiff($) > c and 0(^iWy>2) € $. 

• ^\u=ici>2 € $ iff either Congclaas($) =d c and ^2 € $, or Vi G $ and 

Similar conditions are put on the S-formulas in #, to ensure their consistency 
with Lastdiff($). 

The initial tableau T{<j>) for the MTL-formula <f> is a directed graph whose 
vertices are the consistent subsets of Cl"{4>), and which contains an edge from 
# to * iff all of the following conditions are met: 

• Neztdiff($) = LastdiffiV). 

• Congclass(^) =K Congclass($) + Neztdiff($). 

• For all CLc V> £ Cfo), CU 1> € # iff ifi G * and Neztdiff($) ~ c. 

• For all 0=.c V> € CT(*), 0=<c V- € $ iff V € * and Congclass(V) =d c. 

• For all ©^c V € Cl(<t>), Q^c i> G * iff V € * and Neztdiff($) ~ c. 

• For all 0SiC V € Cl{<f>), 0g-e V- € * iff V € $ and Con^cia55($) =d c. 

It follows that an MTL-formula 4> is satisfiable iff the initial tableau T(<f>) con- 
tains an infinite path $ = #0*1*2 • • • such that 

• <t> e $0, 

• $0 contains no ©-formula, 

• for all i > 0, i)iU^cri>2  G #, implies rp2  G  #> for some j > i with 
Ei<*<>JVeztdjif ($t) ~ c, and 

• for all i > 0, i\)XU=lCi>2  G $i implies V2 G $> for some j > i with 
Congclo3s($j) =d c. 

The proof is similar to the corresponding argument for TPTL ([AH89]). 
Since the initial tableau contains 0(K ■ 2C'N) states, each of size O(C-N), 

T(<f>) can be constructed and checked for infinite paths in deterministic time 
exponential in 0(C-N). m 

Note that although the (worst-case) running time of the tableau algorithm 
is slightly faster for MTL than for TPTL (for which the product of all constants 
appears in the exponent), it is still doubly exponential in the length of the input 
formula. In fact, both formalisms are EXPSPACE-complete. 
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Theorem [Complexity of MTL]. The satisfiability problem for MTL M 
EXPSPACE-complete. m 

Proof: From a nondeterministic version of the tableau algorithm, it follows 
that MTL is in EXPSPACE. The corresponding lower bound can be shown 
similarly to the analogous result for TPTL, by simulating EXPSPACE-bounded 
Turing machines ([AH89]). ■ 

4.3    Expressiveness 

Because of the past operators, MTL can express certain properties more suc- 
cinctly than TPTL. On the other hand, consider the following TPTL-formula 
("Every p-state is followed by a g-state and, later, an r-state within time 5"): 

Ox. [p — 0(q A Oy. (r A y < x + 5))]. 

This property has no natural expression in MTL. However, because of the 
discrete nature of the underlying time domain, it can be translated into MTL 
as follows: 

5 

°(J>-  V°«(« A0<5-er)). 
e=0 

In fact, we show that the expressiveness of MTL is no less than that of 
TPTL in any crucial way. Only properties that put constraints on the time of 
the initial state, such as "The time of the initial state is 2" (x = 2 in TPTL) are 
are not expressible in our version of MTL. It can be argued that for the purpose 
of the analysis of real-time systems, the absolute time of the initial state is of 
no importance. 

Let us call a timed state sequence (a, r) initial, if the time of its initial state 
is 0; that is, r(0) = 0. The following theorem states that if expressiveness is 
measured by the sets of initial models definable in a real-time logic, then MTL 
has the same expressive power as £T, or equivalently, TPTL. 

Theorem [Expressive completeness of MTL]. For every formula <t> of 
CT, there exists a formula V> of MTL (without past operators) such that p \= 4> 
iffp\=yj for every initial timed state sequence p. m 

Proof: As in the proof of the expressive completeness of TPTL given a 
formula 4> of CT, construct a PTL-formula <j>' with additional time-difference 
propositions Tdifft, 0<t< <*(*), and time-congruence propositions Tcong,, 

°-J.J < CW' SUch that MTW = MWY Furthermore, in tf all propositions 
Tdifft and Tcongt are either not within the scope of any temporal operator, or 
immediately preceded by a next operator. 

From <t>' we obtain the desired formula i, by eliminating the time-difference 
and time-congruence propositions as follows. Since we consider only initial 
models, replace each Tdxfft and Tcongt that is not within the scope of any 
temporal operator by true or false, depending on whether t = 0. Then replace 
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OTdifft (for 0 < t < d{4>)) by Q=t true, OTdiffd{4>) by <3>dW true, and 
QTcongt by 0=c(#)t

true- (Observe that only the nezi operator needs to be 
subscripted.) ■ 

5    Discussion 

We have shown that only a very weak arithmetic over a discrete domain of time 
can be combined with PTL to obtain decidable real-time logics. We have then 
identified two ways of constraining the syntax further, to find elementary real- 
time extensions of PTL with the full expressive power of the underlying classical 
theory of timed state sequences. 

Thus, TPTL and MTL occupy a position among real-time logics that is 
as appealing as the standing of PTL for qualitative reasoning. However, both 
TPTL and MTL have EXPSPACE-complete satisfiability problems. Our deci- 
sion algorithms are of a time complexity doubly exponential in the length of the 
timing constraints (though only singly exponential in the number of temporal 
and logical operators). On the other hand, PTL is PSPACE-complete, and has 
a singly exponential decision procedure. We claim that this is because reasoning 
in CT is intrinsically expensive. 

A closer look at our proof of the EXPSPACE-hardness of TPTL ([AH89]) 
suggests that any extension of PTL that allows the expression of timing con- 
straints of the form "The time of one state is within a certain (constant) distance 
from the time of another state," using binary encoding for the time constants, is 
EXPSPACE-hard. Even the identification of next-time with next-state (time as 
a state counter) is of no help in complexity; introducing the abbreviation O* for 
a sequence of k successive next operators makes PTL EXPSPACE-hard! Thus 
the price of an extra exponential is caused by the succinctness of the notation 
introduced by the binary encoding of the constants. 

Acknowledgements. We thank Zohar Manna for his guidance, and David Dill 
and Amir Pnueli for helpful discussions. 
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